Java并发编程的艺术

Java并发编程的艺术-白嫖收集分享
Java并发编程的艺术
此内容为付费资源,请付费后查看
9.930
立即购买
您当前未登录!建议登陆后购买,可保存购买订单
付费资源

资源名称:Java并发编程的艺术

内容简介:

并发编程领域的扛鼎之作,作者是阿里和1号店的资深Java技术专家,对并发编程有非常深入的研究,《Java并发编程的艺术》是他们多年一线开发经验的结晶。本书的部分内容在出版早期发表在Java并发编程网和InfoQ等技术社区,得到了非常高的评价。它选取了Java并发编程中最核心的技术进行讲解,从JDK源码、JVM、CPU等多角度全面剖析和讲解了Java并发编程的框架、工具、原理和方法,对Java并发编程进行了最为深入和透彻的阐述。

《Java并发编程的艺术》内容涵盖Java并发编程机制的底层实现原理、Java内存模型、Java并发编程基础、Java中的锁、并发容器和框架、原子类、并发工具类、线程池、Executor框架等主题,每个主题都做了深入的讲解,同时通过实例介绍了如何应用这些技术。

作者简介:

方腾飞(花名清英,英文名kiral),

蚂蚁金服集团技术专家,从事Java开发近10年。5年以上的团队管理、项目管理和敏捷开发经验,崇尚团队合作。曾参与CMS、电子海图、SOC、ITIL、电子商务网站和信贷管理系统等项目。目前在蚂蚁金服网商银行贷款管理团队负责数据采集平台开发工作。与同事合作开发了tala code Review插件,深受阿里数千名工程师拥趸,并开发过开源工具jdbcutil(https://github.com/kiral/utils)。创办了并发编程网,组织翻译了百余篇国外优秀技术文章,并曾为InfoQ撰写“聊聊并发”专栏,在《程序员》杂志撰写敏捷实践系列文章

魏 鹏,

阿里巴巴集团技术专家,在阿里巴巴中国网站技术部工作多年,曾担任中国网站交易平台架构师,主导了交易系统服务化工作,设计实现的数据迁移系统高效地完成了阿里巴巴中国网站交易数据到阿里巴巴集团的迁移工作。目前在阿里巴巴共享业务事业部从事Java应用容器Pandora和服务框架HSF的相关工作,其中Java应用容器Pandora是阿里巴巴中间件运行的基础,而服务框架HSF则是阿里巴巴集团实现服务化的主要解决方案,二者在阿里巴巴拥有最为广泛的使用量。个人平时喜欢阅读技术书籍,翻译一些国外优秀文档,喜欢总结、乐于分享,对Java应用容器、多线程编程以及分布式系统感兴趣。

程晓明,

1号店资深架构师,从事1号店交易平台系统的开发,技术上关注并发与NIO。因5年前遇到的一个线上故障,解决过程中对Java并发编程产生了浓厚的兴趣,从此开始了漫长的探索之旅:从底层实现机制、内存模型到Java同步。纵观我自己对Java并发的学习过程,是一个从高层到底层再到高层的一个反复迭代的过程,我估计很多读者的学习过程应该与我类似。文章多见诸《IBM developerWorks》、InfoQ和《程序员》杂志。

资源目录:

前 言

第1章 并发编程的挑战 1

1.1 上下文切换 1

1.1.1 多线程一定快吗 1

1.1.2 测试上下文切换次数和时长 3

1.1.3 如何减少上下文切换 3

1.1.4 减少上下文切换实战 4

1.2 死锁 5

1.3 资源限制的挑战 6

1.4 本章小结 7

第2章 Java并发机制的底层实现原理 8

2.1 volatile的应用 8

2.2 synchronized的实现原理与应用 11

2.2.1 Java对象头 12

2.2.2 锁的升级与对比 13

2.3 原子操作的实现原理 16

2.4 本章小结 20

第3章 Java内存模型 21

3.1 Java内存模型的基础 21

3.1.1 并发编程模型的两个关键问题 21

3.1.2 Java内存模型的抽象结构 22

3.1.3 从源代码到指令序列的重排序 23

3.1.4 并发编程模型的分类 24

3.1.5 happens-before简介 26

3.2 重排序 27

3.2.1 数据依赖性 28

3.2.2 as-if-serial语义 28

3.2.3 程序顺序规则 29

3.2.4 重排序对多线程的影响 29

3.3 顺序一致性 31

3.3.1 数据竞争与顺序一致性 31

3.3.2 顺序一致性内存模型 32

3.3.3 同步程序的顺序一致性效果 34

3.3.4 未同步程序的执行特性 35

3.4 volatile的内存语义 38

3.4.1 volatile的特性 38

3.4.2 volatile写-读建立的happens-before关系 39

3.4.3 volatile写-读的内存语义 40

3.4.4 volatile内存语义的实现 42

3.4.5 JSR-133为什么要增强volatile的内存语义 46

3.5 锁的内存语义 47

3.5.1 锁的释放-获取建立的

happens-before关系 47

3.5.2 锁的释放和获取的内存语义 48

3.5.3 锁内存语义的实现 50

3.5.4 concurrent包的实现 54

3.6 final域的内存语义 55

3.6.1 final域的重排序规则 55

3.6.2 写final域的重排序规则 56

3.6.3 读final域的重排序规则 57

3.6.4 final域为引用类型 58

3.6.5 为什么final引用不能从构造函数内“溢出” 59

3.6.6 final语义在处理器中的实现 61

3.6.7 JSR-133为什么要增强f?inal的语义 62

3.7 happens-before 62

3.7.1 JMM的设计 62

3.7.2 happens-before的定义 64

3.7.3 happens-before规则 65

3.8 双重检查锁定与延迟初始化 67

3.8.1 双重检查锁定的由来 67

3.8.2 问题的根源 69

3.8.3 基于volatile的解决方案 71

3.8.4 基于类初始化的解决方案 72

3.9 Java内存模型综述 78

3.9.1 处理器的内存模型 78

3.9.2 各种内存模型之间的关系 80

3.9.3 JMM的内存可见性保证 80

3.9.4 JSR-133对旧内存模型的修补 81

3.10 本章小结 82

第4章 Java并发编程基础 83

4.1 线程简介 83

4.1.1 什么是线程 83

4.1.2 为什么要使用多线程 84

4.1.3 线程优先级 85

4.1.4 线程的状态 87

4.1.5 Daemon线程 90

4.2 启动和终止线程 91

4.2.1 构造线程 91

4.2.2 启动线程 92

4.2.3 理解中断 92

4.2.4 过期的suspend()、resume()和stop() 93

4.2.5 安全地终止线程 95

4.3 线程间通信 96

4.3.1 volatile和synchronized关键字 96

4.3.2 等待/通知机制 98

4.3.3 等待/通知的经典范式 101

4.3.4 管道输入/输出流 102

4.3.5 Thread.join()的使用 103

4.3.6 ThreadLocal的使用 105

4.4 线程应用实例 106

4.4.1 等待超时模式 106

4.4.2 一个简单的数据库连接池示例 106

4.4.3 线程池技术及其示例 110

4.4.4 一个基于线程池技术的简单Web服务器 114

4.5 本章小结 118

第5章 Java中的锁 119

5.1 Lock接口 119

5.2 队列同步器 121

5.2.1 队列同步器的接口与示例 121

5.2.2 队列同步器的实现分析 124

5.3 重入锁 136

5.4 读写锁 140

5.4.1 读写锁的接口与示例 141

5.4.2 读写锁的实现分析 142

5.5 LockSupport工具 146

5.6 Condition接口 147

5.6.1 Condition接口与示例 148

5.6.2 Condition的实现分析 150

5.7 本章小结 154

第6章 Java并发容器和框架 155

6.1 ConcurrentHashMap的实现原理与使用 155

6.1.1 为什么要使用ConcurrentHashMap 155

6.1.2 ConcurrentHashMap的结构 156

6.1.3 ConcurrentHashMap的初始化 157

6.1.4 定位Segment 159

6.1.5 ConcurrentHashMap的操作 160

6.2 ConcurrentLinkedQueue 161

6.2.1 ConcurrentLinkedQueue的结构 162

6.2.2 入队列 162

6.2.3 出队列 165

6.3 Java中的阻塞队列 167

6.3.1 什么是阻塞队列 167

6.3.2 Java里的阻塞队列 168

6.3.3 阻塞队列的实现原理 172

6.4 Fork/Join框架 175

6.4.1 什么是Fork/Join框架 175

6.4.2 工作窃取算法 176

6.4.3 Fork/Join框架的设计 177

6.4.4 使用Fork/Join框架 177

6.4.5 Fork/Join框架的异常处理 179

6.4.6 Fork/Join框架的实现原理 179

6.5 本章小结 181

第7章 Java中的13个原子操作类 182

7.1 原子更新基本类型类 182

7.2 原子更新数组 184

7.3 原子更新引用类型 185

7.4 原子更新字段类 187

7.5 本章小结 188

第8章 Java中的并发工具类 189

8.1 等待多线程完成的CountDownLatch 189

8.2 同步屏障CyclicBarrier 191

8.2.1 CyclicBarrier简介 191

8.2.2 CyclicBarrier的应用场景 193

8.2.3 CyclicBarrier和CountDownLatch的区别 195

8.3 控制并发线程数的Semaphore 196

8.4 线程间交换数据的Exchanger 198

8.5 本章小结 199

第9章 Java中的线程池 200

9.1 线程池的实现原理 200

9.2 线程池的使用 203

9.2.1 线程池的创建 203

9.2.2 向线程池提交任务 205

9.2.3 关闭线程池 205

9.2.4 合理地配置线程池 206

9.2.5 线程池的监控 206

9.3 本章小结 207

第10章 Executor框架 208

10.1 Executor框架简介 208

10.1.1 Executor框架的两级调度模型 208

10.1.2 Executor框架的结构与成员 208

10.2 ThreadPoolExecutor详解 213

10.2.1 FixedThreadPool详解 213

10.2.2 SingleThreadExecutor详解 214

10.2.3 CachedThreadPool详解 215

10.3 ScheduledThreadPoolExecutor详解 217

10.3.1 ScheduledThreadPoolExecutor的运行机制 217

10.3.2 ScheduledThreadPoolExecutor的实现 218

10.4 FutureTask详解 221

10.4.1 FutureTask简介 222

10.4.2 FutureTask的使用 222

10.4.3 FutureTask的实现 224

10.5 本章小结 227

第11章 Java并发编程实践 228

11.1 生产者和消费者模式 228

11.1.1 生产者消费者模式实战 229

11.1.2 多生产者和多消费者场景 231

11.1.3 线程池与生产消费者模式 234

11.2 线上问题定位 234

11.3 性能测试 236

11.4 异步任务池 238

11.5 本章小结 240

资源截图:

1.png

    © 版权声明
    THE END
    喜欢就支持一下吧
    点赞7 分享
    评论 抢沙发
    头像
    欢迎您留下宝贵的见解!
    提交
    头像

    昵称

    取消
    昵称表情代码图片快捷回复

      暂无评论内容